Главная Промышленная автоматика.


которое не позволяет определить каждую из этих реакций, если предполагать, что тело абсолютно твердое.

С физической точки зрения реакции Q и Q" являются, однако, вполне определенными, так как тела в природе не обладают свойствами, которые мы приписываем абсолютно твердым телам в теоретической механике: они деформируются, и эта деформация вызывает действие упругих сил. Если принять во внимание эти силы, то можно определить и каждую из последних двух реакций.

111. Тело вращается вокруг оси и скользит вдоль нее. В этом случае реакции Q", Q" оси на тело нормальны к оси. Приняв последнюю за ось Oz, получим два условия равновесия

Л/ = 0. Z = 0.

112. Тело, опирающееся на неподвижную плоскость.

Г. Случай одной точки опоры. Рассмотрим сначала случай, когда тело опирается на неподвижную плоскость только одной точкой. Реакция плоскости на тело будет нормальна к плоскости, если предположить, что тело может скользить без трения. Тело может рассматриваться как свободное, но находящееся под действием сил f,, F,, непосредственно к нему приложенных, и реакции Q плоскости. Для того чтобы было равновесие, необходимо, чтобы силы Fi имели равнодействующую, равную и прямо противоположную реакции Q (рис. 73), т. е. чтобы заданные силы имели равнодействующую R, проходящую через точку опоры, перпендикулярную к плоскости и направленную таким образом, чтобы она прижимала тело к этой плоскости. Это условие, очевидно, и достаточно, так как если оно выполняется, то равнодействующая не вызовет скольжения тела и уравновесится равной и прямо противоположной реакцией плоскости Q. Легко получить этот результат также аналитически.

2°. Случай нескольких точек опоры, лежащих на одной прямой. Допустим, что тело опирается на неподвижную плоскость

в точках Ау, Ач.....А прямой Ох/Во всех этих точках плоскость

развивает нормальные реакции Qi, Qj, .... Q, направленные в одну и ту же сторону (рис. 74). Эти силы имеют равнодействующую Q, нормальную к плоскости, направленную в ту же сторону и приложенную в некоторой точке, лежащей между крайними точками А и А.

Для того чтобы и.мело место равновесие, необходимо, чтобы заданные силы уравновешивались реакциями плоскости, т. е. чтобы они имели одну равнодействующую, нормальную к плоскости, направленную таким образом, чтобы она прижимала тело к плоскости и чтобы ее продолжение пересекало прямую Ох в точке, располо-



женной между Ау и Ар. Эти необходимые условия также и достаточны, так как названная равнодействующая может быть тогда разложена на две другие силы, нормальные к плоскости и приложенные в двух точках опоры. Полученные силы уничтожатся сопротивлением плоскости.

Чтобы выразить эти условия аналитически, примем прямую Ох за ось X, ось г направим нормально к плоскрсти в ту сторону, по

которую находится тело. Тогда все реакции Q, .....Qp будут

положительными. Уравнения равновесия будут

Х=0. Y = 0,

Z + Q, + Q2+---+Q. = 0,

L = 0, М -fliQj -ajQa-... ...-apQp = 0, A/ = 0,

, a„-абсциссы


Рис; 74.

где ui, 02.....с

точек опоры.

Четыре из этих уравнений, не содержащих реакции, выражают необходимые условия равновесия. Они показывают, что заданные силы должны иметь равнодействующую, нормальную к плоскости ху и пересекающую ось X. Третье уравнение показывает, что проекция Z равнодействующей должна быть отрицательная, т. е. что равнодействующая должна быть направлена так, чтобы она прижимала тело к плоскости. Пусть X - абсцисса точки пересечения равнодействующей с осью Ох. Момент равнодействующей относительно оси Оу равен М - - xZ. Следовательно, должно быть

xZ+aiQi + a2Q2+ ... apQp = 0,

откуда, заменяя Z его значением, получаем

aiQi + aoQa + ... +

~ Q1 + Q2+ ... +Qp

а эта величина, как известно, заключена между двумя конечными

значениями и йр, так как величины Qi, Q2.....Qp положительны.

Таким образом, продолжение равнодействующей пересекает ось Ох между крайними точками опоры.

Реакции плоскости должны теперь удовлетворять двум уравнениям

Z + Qx + Q2+ :•• +Qp=0,

M - axQx - a2Q2~ ... -OpQO.



Если имеются только две точки опоры, то эти уравнения определяют обе реакции. Если точек опоры больше двух, то реакции не могут быть определены из этих соотношений. Они могут быть определены, если считать тело упругим.

3°. Общий случай. Предположим, что твердое тело опирается на

плоскость в нескольких точках Ау, А.....Лр, не лежащих на одной

прямой. Со стороны плоскости возникают нормальные реакции

Qi, q2.....Qp имеющие одну равнодействующую Q, так как они все

направлены в одну сторону.. Как мы видели в теории сложения параллельных сил, точка пересечения этой равнодействующей с плоскостью лежит внутри любого выпуклого многоугольника, охватывающего все точки опоры. В частности, она находится внутри опорного многоугольника, который является выпуклым и вершинами которого служат точки опоры. Этот многоугольник охватывает все остальные точки опоры. Для равновесия необходимо, чтобы заданные силы уравновешивали равнодействующую реакцию Q. Следовательно, заданные силы должны иметь равнодействующую, нормальную к плоскости и направленную так, чтобы она прижимала тело к плоскости и пересекала эту плоскость внутри опорного многоугольника. Этих условий достаточно, так как при сделанных предположениях можно всегда разложить равнодействующую на три силы, нормальные к плоскости и приложенные к точкам опоры, и эти силы уничтожатся сопротивлением плоскости.

Возьмем ту же систему осей. Твердое тело можно рассматривать

как свободное, но находящееся под действием сил Fy, F.....F,

Qi, Q2.....Qp. Условия равновесия будут

X=Q, Y=0, N = Q, (1)

i + Ql-62q2+ ••• +6pQp = 0. (2)

M - axQx - aQ- ... -00 = 0,.

где ay, by, a, b, ...-координаты точек опоры.

Уравнения (1), не содержащие реакций, выражают необходимое условие равновесия, заключающееся в том, что заданные силы имеют равнодействующую, нормальную к плоскости. В самом деле, величина LX-\-MY-\-NZ равна нулю и равенство Z - Q возможно только при условии, что все реакции равны нулю, так как последние либо равны нулю, либо положительны. В этом частном случае, когда все реакции равны нулю, Z, L п М будут равны нулю, и тогда будут находиться в равновесии непосредственно приложенные силы. Отбрасывая этот очевидный случай равновесия, мы видим, что силы F, .... f„ должны иметь равнодействующую, нормальную к плоскости. Необходимо, кроме того, чтобы проекция Z была отрицательная, как это видно из первого уравнения (2), и чтобы равно-





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 [42] 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

0.0049